SSGRR 2001

Modeling Technology for a
Model-Intensive Enterprise

Peter Denno, David Flater, Michael Gruninger

Abstract—The Object Management Group (OMG™) is
defining specifications supporting a modeling environment that
permits models from a ‘family of modeling languages’ to
populate a repository. In that environment, mechanisms that
give coherence to the collection of models defining a project are
the repository’s common meta-model and constraints enforcing
a notion of well-formedness on the content of the repository.
This paper argues that additionally what is required to
implement a model driven architecture (MDA™) is an ‘inter-
model’ language with reach beyond an object context into an
ontology of the domain vocabulary and requirements
definition. If specifications under this arrangement are
modularized properly, reuse of the domain terminology and
business sector characterization is possible. The repository
federates models into an emergent enterprise model. This
paper considers opportunities for an inter-model language in

supporting traceability of requirements from domain
knowledge to implementations. It explores an idea of
modularized specifications where domain knowledge is

separated from implementation-biased models and reified
refinement relations bridge the gap.

Index Terms—enterprise modeling, meta-data repositories,
ontologies, requirements engineering, traceability.

I. INTRODUCTION

This paper explores how a model repository based on a

family of modeling languages and an inter-model language
(IML) may be used to federate project-oriented models into an
emergent enterprise model. The benefits that federation might
yield are a non-prescriptive approach to enterprise modeling, a
reusable domain characterization, traceability, and easier
system validation.

Peter Denno (peter.denno@nist.gov) and David Flater
(david.flater@nist.gov) are with the National Institute of Standards and

Technology, Gaithersburg, Maryland 20899 USA.
Michael Gruninger (michael.gruninger@nist.gov) is with the University of
Maryland, College Park, Maryland, USA.

Object Management Group, OMG, CORBA, Unified Modeling Language,
UML, Model-Driven Architecture, MDA, MOF, and other marks are
trademarks or registered trademarks of Object Management Group, Inc. in the
U.S. and other countries.

Commercial equipment and materials are identified in order to describe
certain procedures. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the
best available for the purpose.

Among the myriad problems encountered in large
integration projects, we focus on problems of coherence
among models, of which the following are examples: (1)
current development practices seldom make use of an enduring
characterization of the environment'. Subsequent business
process re-engineering repeats the costly work of
characterizing the environment; (2) typically, modeling that
might allow domain experts to verbalize and verify domain
knowledge cannot be materially used in subsequent
implementation-biased modeling, and; (3) the differing
perspectives and representations implied by the wvarious
modeling technologies employed — though essential to
characterizing the system — hinder an account of the
refinement of thought embodied in the models. This
undermines traceability.

These problems are well known and are the subject of rich
bodies of research. Further, they are interrelated; they each
concern the proper separation and interrelationship of
information embodied in many models defined from disparate
viewpoints. The problems need not be addressed
independently. The paper explores the idea that solutions can
be realized simultaneously using a model repository having an
integral inter-model language (IML) implemented as a
description logic. Within the model repository, the IML would
provide two functions: (1) it would provide a means to
establish refinement relationships between elements of project-
oriented models; and, (2) it would provide a means to relate
the project-oriented models to its own conceptualization of the
environment. The language and repository would, in effect,
allow an enterprise model to be defined ‘bottom-up’ as the
enterprise’s various information infrastructure and business
process re-engineering projects provide models to be federated
into a coherent whole. Though the approach does not prescribe
an enterprise model, it may require rigorous attention in the
areas of conceptual modeling and requirements engineering.

This paper describes very early work toward these goals.
The problems are discussed in the context of a meta-data
repository and family of languages [1],[2] concepts as
promulgated by the Model Driven Architecture™ (MDA™)
[26], [23], [27] of the OMG. The model federation approach
discussed here would provide an MDA with traceability — an
account of the relationship between motivating statements of

! - environment refers to the context under which a developing project will

operate, including business rules and processes, organizational structure, and
existing information technology. A characterization of the environment is
unbiased with respect to the implementation of developing projects. This
usage is similar to that of [3].

SSGRR 2001

requirements and their realization in system behaviors.

The next section of the paper describes how a family-of-
languages, meta-data repository and reified refinements may
provide coherence among models. Section III considers how a
description of the environment and requirements should be
organized to ensure reusability. The idea that environment
information and refinements may be represented using an IML
is discussed. Section IV considers how knowledge about the
environment should be modularized to make the best use of
existing sources and ensure its coherence and stability. Section
V reviews related work. Section VI concludes the paper with a
discussion of possible future work.

II. MODEL REPOSITORY AND REFINEMENT

A. Requirements

In the course of a typical project, various modeling
technologies, possessing differing viewpoints, levels of
abstraction, fidelity, and formality are employed. Software
engineering methodologies differ principally with respect to
the path of refinements they prescribe. Disregarding these
differences, the succession of models proceeds, roughly
speaking, from an elaboration characterizing the operating
environment and requirements to an elaboration of
implementations.

A facility that may foster coherence among project-oriented
models in this broadly defined scenario should provide the
following: (1) a means to manage the collection of project-
oriented models (a model repository); (2) a means to define the
environment under which the project-oriented models are
meaningful; and, (3) a means to relate the project-oriented
models to each other and to the environment. These
requirements underlie the design choices described below. The
model repository is considered first.

B. Model repository

A model repository may serve to increase coherence across
models by various means, among which are concern spaces
[4], commonality in usage of meta-model elements across the
various modeling technologies, and explicit placement of
refinement relationships. Concern spaces, though promising,
are not discussed further here. Commonality in usage of meta-
model elements is pursued in the OMG through the
development of the Meta Object Facility™ (MOF™) [30] and
family-of-languages notion for UML™ |

UML [6], [28] is defined using a subset of itself called the
UML meta-model. The meta-model defines class definitions
(e.g. a class representing UML associations, a class
representing UML classes efc.) and describes the intent of
those classes with English language text. Well-formedness
rules written in the Object Constraint Language (OCL)
[29],[15] constrain the usage and interrelation of instances of
those classes (that is, a model written in UML) to meaningful
forms. The family-of-languages approach provides a
methodical means to define modeling notions that differ in
form and meaning from those that UML defines.

The family-of-languages of UML is achieved by either of
two means: UML profiles or the OMG Meta-Object Facility
(MOF). The profile approach uses capabilities within UML
(stereotypes, tagged values and constraints) that, for all
practical purposes, allow one to subclass a UML model
element for one’s particular purposes. The MOF approach is
more far-reaching; it is based on the fact that the UML meta-
model is itself an instance of a model, the MOF model. By
instantiating additional objects from the MOF model (new
model elements in the UML meta-model) and by defining
associations between these elements and the model elements of
the UML meta-model, new modeling technology may be
defined.

The MOF-based approach is more comprehensive than the
profile-based approach in that it may be used to instantiate
entirely new classes, not just subclasses of UML meta-model
classes. The perspective on a model repository advanced by
this paper favors the MOF-based approach, in part because it
is likely that there will always be useful modeling notations
that are not simple specializations of UML.

The MOF is an instance of a layered architecture for a meta-
data repository. (See Figure 1.) An earlier presentation of this
idea is the Information Resource Dictionary System (ISO

10027) [5]
G
MOF
mieta-teta
rrnde 1
L2
o gz
techirologe TIML IDEFT EMPFESS
trets o del eta-todel 1rets-trodes 1
L"; 1 [1 1
models PO ERP Thop sched.
ML modal AL model TIDL maode 1

Figure 1 — Layered meta-data architecture

It is of great advantage for the modeling technology of
project-oriented models to share common modeling notions
through a layered meta-model architecture. A meta-model that
instantiates the modeling technologies of a collection of
domain models provides elements of a common language for
making statements about those modeling technologies and the
models they instantiate.

C. Reified refinements and concerns

A second means to foster coherence among models of a
project is to identify it explicitly.

A refinement is a relationship between model elements that
represents the elaboration of details existing between the
elements. Model elements are instances representing pieces of
a model and are instantiated from the meta-model of the

SSGRR 2001

model. (All the various meta-model objects: classes,
associations, packages, are derived from a model element
class.)

The refinements made in the course of a project may span
models and documents defined from various viewpoints.
Traceability is an account of the relationship between
motivating statements of requirement and their realization in
system behaviors. From the perspective of this paper,
traceability is supported as an account of refinements between
model elements.

Though UML possesses a notion of refinement, it is rather
inchoate; it “specifies refinement relationship between model
elements at different semantic levels, such as analysis and
design” [6], pg. 2-19. A direction for this research is to find a
firmer foundation and elaboration of the notion.

Refinements should be reified objects. The value of treating
refinements as first class objects in their own right is the rigor
that this brings to the notion of traceability: if refinement
relationships are reified and classifiable, and if the model
elements to which they refer are identified, then accounting for
system behavior (and making domain experts and developers
accountable for specific characteristics of the system) can be
more easily systemized. These are very big ‘ifs’, however.

A classification of refinements will add to their utility.
Following roughly the reasoning of [7], three dimensions of
refinement may be identified: (1) conceptual refinement,
where the model elements are terms from the universe of
discourse, and the refinement is a constraint concerning their
usage; (2) behavioral refinement, where the model elements
represent actors and the relationship concerns the
representation of synchronization, triggering, conditions,
composition or factoring of activity; and, (3) technical
refinement, a relationship in which an implementation
commitment is made. A specialization of technical refinement
is structural refinement, where the model elements describe an
encoding of information, and the refinement concerns
differences in these encoding. In addition to these refinement
relationships, there may be identity and conflicting assertion
relationships between model elements. (See Figure 2).

Relationship

/\

|

| Conflicting |

| Concern | |Refinement| | Identity |

| Conceptual |

| Behavioral | | Technical |

Figure 2 — Classification of relationships among model elements

Technical refinement occurs only between model elements
of implementation-biased models. Behavioral refinements
occur in either conceptual or implementation-biased models.

Refinements are distinguished from concerns. A concern is
a relationship between a statement about the environment
(which is necessarily conceptual) and its manifestation in
(implementation-biased) model elements.

Conceptual refinement should occur only in conceptual
models (models lacking an implementation bias). In the
architecture described, there would be no conceptual
refinement relationships among the model elements in the
repository (project-oriented models). Such refinement would
reflect new concepts introduced through implementation and
unrelated or unknown in the operating environment. Existence
of such a refinement hinders reusability of knowledge of the
environment. The relationship between a conceptual assertion
and its manifestation in model elements is a conceptual
concern. These ideas are discussed further in section III.

Clearly, refinements and concerns encompass a wide body
of information, the foundation of knowledge from which they
emerge is immense. Though the characterization above may be
useful towards the goals of coherence, they are not the sort of
distinction typically made by software developers; that is, they
concern the nature of the refinement, not the domain nor its
models. Identification and placement of refinements requires
additional modeling effort.

Identification of refinements can be aided by mechanisms
that exploit an understanding of the modeling technologies
involved. In the context of a four-layer architecture, where
modeling technology resides at the M2 layer, refinement
relationships occur at the M1 level (i.e. in user models), an
‘image’ of the refinement might occur at the M2 level. That is,
between modeling technologies themselves a justification for
M2 refinements may exist. For example, the IDEFO0 [8] notion
of control does not distinguish pre-conditions from triggering
events, whereas UML state machines, [6] and PSL [9] do.
Figure 3 illustrates the idea, depicting one (of potentially
many) refinement images between IDEF0 and UML state
charts.

hi2
Refinement | (L State Machine
images .
IDEFO Control [.. g Guard
Model b Iodel Element
Element
' N TUML State Machine
Event
Model Element
b1
IDEFO Refinement | UML State Machine
Control iy Event
Instance Elernent
IConcems
|
Environment Conceptual Model
Figure 3: — A behavioral refinement and its image

SSGRR 2001

III. MODELING THE ENVIRONMENT AND REQUIREMENTS

A model repository based on a layered meta-model
architecture and reified refinements may provide coherence
among project-oriented models. Traceability to requirements
requires the establishment of additional relationships, those
from elements of project-oriented models to the operating
context and statements of requirement. If careful attention is
paid to the separation of implementation concerns from
environment concerns, conceptual and enterprise modeling
effort can be effectively used in subsequent refinement and
reused in subsequent business process re-engineering. These
ideas are considered below.

A. Separation from implementation dependencies

Developers of information technology typically interview
domain experts to acquire knowledge of business processes
and terminology. This knowledge may be recorded in lexicons,
use case models and various other conceptual models. Without
an enduring infrastructure for its integration with other models,
refinement relations cannot be established between this body
of knowledge and subsequent models. Traceability is lost.
Without separation from implementation concerns, the portion
of knowledge containing an implementation bias is often
proven through refinement of the implementation to be
incorrect. In practice, conceptual models are typically treated
as by-products of implementation, useful for verifying facts
with domain experts and helping developers to gain familiarity
with the domain of discourse, but providing little additional
and subsequent utility.

A number of researchers in requirement engineering and
conceptual modeling have emphasized the importance of
keeping characterizations of requirements and environment
free of implementation bias [10], [3], [11], [32]. A
characterization of the environment that is free of
implementation detail is more easily verbalized and verified by
domain experts. Further, its potential for reuse is greatly
improved.

In [3], Zave and Jackson argue for additional distinctions,
specifically between (1) a designation (informal description of
the meaning of an atomic formal term referring to the
environment) and a definition (a formal term built ultimately
on designations); (2) actions initiated by the environment,
actions initiated by the system and actions shared by the
system and environment, and; (3) environment state and
system state. Regarding the latter, they argue that
characterizations of system state introduce an implementation
bias. To avoid this, assertions about system state can be
reformulated as characterizations of the environment with and
without the system. The advantages that this discipline affords,
they argue are: (1) the ability to collect information about the
environment without regard to how it fits within the system to
be constructed; (2) a distinction that highlights the potential
discrepancy between the environment state and system state
(this might serve validation purposes), and; (3) a stable
relationship between requirements, specifications and domain
knowledge.

B. Towards an inter-model language

In the light of the above, the operating environment
including definitions, business rules and processes may be
established in an IML. This information constitutes aspects of
an enterprise model, invariant to implementation concerns that
do not affect business process. In order to achieve coherence
to requirements, relationships may be established between this
information and project-oriented models. These ideas are
discussed below.

Refinement relationships may occur between model
elements of disparate models. The relationship between
refinements and the models is analogous to the relationship
between Object Constraint Language (OCL) and elements
within a single UML model — both ‘reside outside’ the
elements they reference and establish a context based on those
elements.

A model of the environment that is reusable with respect to
various implementation specific models will have separate sets
of refinements to those models arising from the requirements
of the various projects. In this sense, the environment model
also resides outside the implementation specific models.

The observations of the previous two paragraphs provide
some justification for the use of an inter-model language. In
order to address uniformly the requirements engineering
concerns, this language must have reach beyond the object
context (i.e. beyond the context of OCL) into an ontology of
the domain terminology and characterization of the
environment. In summary of the considerations of Section II1
A, above, the following additional requirements are apparent:
(1) it should allow specification of terminology, with clear
indication of what is a designation; (2) it should be possible to
seamlessly extend the language to express notions of time and
process; (3) it should be possible to distinguish actions that are
performed by the environment from actions that are performed
by the system or shared, and; (4) it should possess the qualities
of a good conceptual modeling language, (such as enumerated
by [10]) expressability, clarity, semantic stability, validation
mechanism, and formal foundation.

More complete arguments than made here for (1) and (3)
can be found in [3]. The need to describe actions in the
environment necessitates (2). Description logic such as
Powerloom [12] and KL-ONE [13] as well as knowledge
management and acquisition tools such as CODE4 [14] may
generally fill these requirements. A process specification
language such as PSL [9] may serve (2). A detailed discussion
of these is beyond the scope of this paper.

C. An example

The following example illustrates the idea of separation of
conceptual modeling into assertions in the IML and linking of
assertions to a project-oriented (implementation-biased)
model. The example is based on one provided by Warmer and
Kleppe [15]. The figure (Figure 4) depicts a UML class
diagram from a finance domain. The model allows that a
person have a mortgage that takes as security a house that is
owned by another person. As the authors point out, this is not

SSGRR 2001

realistic and OCL may be written to prohibit that
interpretation.

Person +Owner +Home House
+Name : String| - =
SSN : String Address : String|

* 0.*
. . * +security
Mortgage
-Lender : String

Figure 4 — UML Class diagram for mortgage

This model, contained in the model repository, is an
instantiation of M2 classes of the UML meta-model.
Specifically, instances of UML:Class objects for Person,
House and Mortgage and instances of UML:Association
objects connecting the objects. The UML:Class and
UML:Association classes are themselves instances of M3 level
classes

In predicate logic (representing what might be IML) the
constraint could be written as:

V (Person P)(House H)(Mortgage M):
(owns P H) € (has-mortgage-for P M H)

The concepts Person, House, and Mortgage defined in the
IML may be either designations (i.e. described informally) or
definitions, (i.e. defined by expressions built ultimately on
designations) the choice depending on one’s modeling
preferences. Person, House and Mortgage are related to the
corresponding classes of the UML model through technical
concern relations. (The UML model commits to a specific
object-oriented implementation). The association owner
between Person and House represents an application of the
concept owns (a definition) defined originally in the IML.
Concepts should not be introduced nor refined in
implementation models. The relationship between owns and
the OCL constraint is a conceptual concern. This is depicted
in Figure 5, below.

PesonMatzaze Semnty
Az sociahon Mortgage Az sociahon
Uwrrer
Fexson A ssociahon House

|
MI Users
selfmorzaze .samuit:r.pﬁm =self’ [7TiT,
QCL comstraint Iodal Tastaroes
1 Corxeptndl corcern
IME Brvd cvmrasat

F(Peson Py Howse HY Morigage M. Conegraal
[owrrs PH) € (hes morgagedoe P M H) | oy

Figure 5 — Example conceptual concern

D. Advantages of separation

Constraints defining a purely conceptual model may be
collected without regard for particular implementations. When
described in a logical formalism, a collection of such
knowledge may be tested for logical consistency. Further,
though it may be argued that the rule above cannot be
verbalized easily by an expert, it is probably significantly more
easily verbalized than the same constraint embodied in an
implementation-biased UML model. Finally, ordinary
objective statements of a conceptual model may be presented
in notations such as Object Role Modeling, [10], [16] that
some domain experts may find to be more easily verbalized
than quantified logical statements. Promising approaches to
aiding experts in articulating domain knowledge are described
by Lethbridge [14] and Sharp [17].

Finally, as the example may illustrate, accountability
originates in the environment, but not necessarily through
requirements analysis with a domain expert. It can be argued
that the mortgage security constraint is not really ‘discovered’
in an interview with the domain expert but rather constitutes
commonly held belief. If this seems unlikely at a level of
specificity concerning mortgages and security, it seems more
likely concerning knowledge of loans in general. ‘Discovering’
such knowledge again and again in interviews is wasteful.

In a description logic model of this domain, a House may be
a kind of Valuable-thing and a Mortgage may be kind of
Secured-loan. In that context, a more general version of the
example rule might apply:

V(Person P) (Valuable-thing V1) (Secured-loan L)
3(Valuable-thing V2):
(AND (has-secured-loan-for P L V1)

(loan-security L V2)) =» (OR (owns P V2) (= V1 V2))

This latter rule might apply as well to a home equity loan to
pay college tuition.

In summary, a formal inter-model language aids consistency
checking of the knowledge asserted by domain experts and is
more easily verbalized than models obfuscated by
implementation concerns. If the formal language is a
description logic, the further benefits of default reasoning in a
manner paralleling a programming language’s type hierarchy,
and sophisticated query capability might be realized.

As noted above, the identification of refinements, and
rigorous attention to keeping characterizations of the
environment and requirements free of implementation-bias,
exacts a price on the development process. The next section of
the paper explores how some of the potentially costly work
involved can be avoided through the reliance on information
found in consensus industrial standards.

IV. AN EMERGENT ENTERPRISE MODEL

An enterprise model is a model that serves to inform
regarding the organizational structure, resources, information
technology and processes of an enterprise. The model is of

SSGRR 2001

crucial value in business process re-engineering efforts.

Use of the architecture described entails encoding many of
the concerns of enterprise modeling into a conceptual model
defined in IML. These concerns include descriptions of
business process with and without the information technology
produced by the project, and definitions of fundamental terms
and business rules. Further, this information is linked to its
implementation in project-oriented models. In this sense, the
architecture enables the specification of an enterprise model
‘bottom up’.

There are two issues to discuss with respect to the
architecture and enterprise modeling. The first is how the
enterprise might establish the foundational concepts of its
enterprise model. The following suggests that consensus
industrial standards may help here. The second issue is how
the information might be organized into enterprise model
viewpoints.

An important precondition for the development of a
consensus industrial standard is the acceptance among
participants of a common usage of terms, and of a common
understanding of the business domain for which the standard
encodes best practice. These requirements are at the
foundation of standards making. Consensus building towards
these requirements usually relies on prior studies. In the area
of manufacturing system integration standards (where the
authors work) for example, there is a large body of research
characterizing manufacturing domains and the environment in
which information technology for manufacturing operates.
Such work may serve as the foundation of knowledge for a
usage of the architecture. That is, a conceptual expression of
requirements in the form described in Section III can be built
from a characterization of the business domain, and
terminology. The latter are established by consensus industrial
standards.

Further, standards often specify archetypal use cases and
corresponding conformance classes for uses of portions of the
specification. Though the idea is only distant on the horizon,
consensus industrial standards that build their terminology on
the foundation of a standard upper ontology [18] might
integrate well with the architecture described here. In this
scenario, the standard may formally describe terminology and
use cases for normatively defined interfaces. An archetypal
process description corresponding to a use case of the interface
(sometimes called a recommended practice) may be
specialized by an enterprise’s description of the usage. This
‘layering of description’ is illustrated in Figure 6.

Finally, in order for this information to be useful to business
process re-engineering, enterprise viewpoints (e.g. CIMOSA’s
function, organization, information, and resource viewpoints)
must be established. The obvious approach is to simply adopt
and encode in IML an existing enterprise modeling practice;
there are many to choose from [19], [20], [21], [22]. A more
interesting approach is to explore whether these (and other)
enterprise modeling viewpoints may be synthesized through
multi-dimensional separation of concerns, as described in [4].

The technique allows for the modularization and management
of concerns that may be expressed in various model elements
across various models.

Meta-Data Repository,
Standard and custom models

Enterprise’s Processes & Rules

Process Archetypes from Standards

PSL & other formal notations

Terminology Definitions & Designation

Figure 6 — Standard and custom environment information

V. RELATED WORK

In term of general perspective on the role that OMG
technology can play in its solution, this work is inspired by
D’Souza’s paper [23].

The position on requirements engineering taken here is
strongly influenced by the work of Zave and Jackson, [3], [24].

Ossher and Tarr [4] define a technique to modularize and
relate project concerns. In addition to providing an additional
dimension of coherence, the technique may provide a tractable
means to manage reified refinements and concerns. The notion
of concern in Ossher and Tarr’s work differs somewhat from
that here. Here concerns may be embedded within an
enterprise model and have the full expressivity of first order
predicate logic.

Nuseibeh [25] has investigated the reconciliation of
viewpoints. The notions of refinement and concern used in this
paper have similarity with their conception of viewpoints.

The approach described here does not define enterprise
model viewpoints, as does CIMOSA [19], ARIS [20] and the
Zachman Framework [21]. In this respect the approach more
closely resembles work where enterprise viewpoints are
defined ad hoc, to meet the specific requirements of the
integration work at hand. Nissen et al. [22] have used
ConceptBase [31] in that respect. None of the aforementioned
work uses a meta-model of modeling technology, however.

VI. CONCLUSION

The paper outlines how a model repository built on a
family-of-languages meta-model could be used to establish
coherence among the project-specific models it manages. This
coherence aids in the resolution of difficult problems that
large-scale integration projects inevitably face. The key to the
solution described is the embedding of an inter-model
language in the repository. The language may be used to
define a conceptual model that provides context for project-
specific models and reify relationships among elements of

SSGRR 2001

those models. When attention is paid to the separation of the
IML-based environment model from project-specific models in
the repository, and links are established between the two, the
coherence resembles aspects of an enterprise model.

To date, we have just begun work towards validating this
approach and refining our knowledge of the problems, having
begun work on a meta-data repository and experiments with
Powerloom [12], software implementing a description logic. It
is likely that our final solution will differ substantially from
what is described here. There is much work to be done.
Specifically, the taxonomy of refinement and concerns must be
studied further and elaborated upon. Secondly, the notion of
enterprise model viewpoints in an IML-based environment
model must be explored. Its tractability is crucial to business
process re-engineering under the architecture. Additional work
is required to determine whether the ‘separation of concerns’
techniques of Ossher and Tarr [4] might apply here.

Finally there are issues with respect to the management of
refinements in the modeling environment. A broadly defined
conceptual notion asserted in the inter-model language would
have links to model elements in various models. Managing this
complexity without taxing the user unreasonably may be
challenging. The separation of conceptual and requirements
modeling into IML code is a first line of defense against
problems here. Multi-dimensional separation of concerns has
relevance here also.

We plan to explore the approach in the domain of
manufacturing systems integration, based on prior work in
product data management [35], enterprise resource planning
[33] or machine control [34].

REFERENCES

[1] S. Cook, “The UML family of languages,” UML 2000 - The Unified
Modeling Language: Advancing the Standard, Third International
Conference, York, UK, October, 2000, Springer Lecture Notes in
Computer Science, vol. 1939, 2000.

[2] A. Evans, S. Kent, and B. Selic, Preface of UML 2000 - The Unified
Modeling Language: Advancing the Standard, Third International
Conference, York, UK, October, 2000, Springer Lecture Notes in
Computer Science, vol. 1939, 2000.

[3] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM Trans. Soft Eng and Meth., Vol 6, No. 1, January
1997.

[4] H. Ossher and P. Tarr. "Multi-Dimensional Separation of Concerns
using Hyperspaces,” IBM Research Report 21452, April, 1999.

[5] International Organization for Standards, ISO/IEC 10027 Information
technology — Information dictionary system (IRDS)
framework, 1990.

[6] Object Management Group, Unified Modeling Language Specification,
Version 1.3: ftp://ftp.omg.org/pub/docs/ formal/00-03-01.pdf, 2000.

[7] P. Denno, "Modeling Requirements for Self-integrating Manufacturing
Systems," In Proc. The 4th International Conference on Design of
Information Infrastructure Systems for Manufacturing, Melbourne,
Australia, 2000.

[8] Federal Information Processing Standards, Integration definition for
function modeling (IDEF0), National Institute of Standards and
Technology, Gaithersburg, Maryland, 1993.

[9] International Organization for Standardization, /SO 18629-11: Process
Specification Language Core. ISO TC184/SC4 Working Draft, 2001.

[10] T. Halpin and J. Gray, Information Modeling and Relational
Databases: From Conceptual Analysis to Logical Design, Morgan
Kaufmann Publishers, 2001.

resource

[11] J.C.S. Do Prado Leite, and A.P.A Oliveria, “A client oriented
requirements baseline,” In Proc. Second IEEE Intrnl. Symposium on
Requirement Engineering, IEEE Computer Society, ISBN 0-8186-7017-
7,108-115.

[12] Powerloom, http://www.isi.edu/isd/LOOM/PowerLoom/index.html.

[13] R.J. Brachman and J. Schmolze, An overview of the KL-ONE
knowledge representation system," Cognitive Sci 9(2), 1985.

[14] T. C. Lethbridge, “Practical techniques for organizing and measuring
knowledge,” PhD. dissertation. University of Ottawa, November, 1994.

[15] J. Warmer and A. Kleppe, The Object Constraint Language: Precise
Modeling with UML, Addison-Wesley, Reading, Massachusetts, 1999.

[16] T. Halpin, “Augmenting UML with Fact-orientation,” In Hawaii
International Conference on System Science (HICCS-34), Maui,
January, 2001.

[17] J. K. Sharp, “Precise Meaning of Object Oriented Models,” In The
Journal of Conceptual Modeling, Issue Number 8, April, 1999.
http://www.inconcept.com/JCM/April1999/sharp.html,

[18] IEEE P1600.1 Standard Upper Ontology (SUO) Working Group,
http://suo.ieee.org/, May 2, 2001.

[19] Esprit Consortium AMICE (editors) CIMOSA: Open System
Architecture for CIM, 2™ revised and extended edition, Springer-
Verlag, Berlin, 1993.

[20] A. W. Scheer, Business process engineering : reference models for
industrial enterprises, study edition, Springer-Verlag, 1998.

[21] J.F. Sowa and J. A. Zachman, "Extending and Formalizing the
Framework for Information Systems Architecture,” IBM Systems
Journal, vol. 31, no. 3, 1992.

[22] H. Nissen, M. Jeusfeld, M. Jarke, G. Zemanek, and H. Huber.
“Managing multiple requirements perspectives with metamodels.,”
IEEE Software, 12(6):37--48, 1996. 12

[23] D. D’Souza, “MDA - An Architecture for Modeling, Enabling Model-
Driven Integration,” http://www.catalysis.org/omg/index.htm, 2001.

[24] M. Jackson and P. Zave, “Deriving specifications from requirements:
An example,” In Proceedings of the 17th International Conference on
Software Engineering. ACM, New York, 1995

[25] B. Nuseibeh, J. Kramer and A. Finkelstein, “A framework for
expressing relationships between multiple views in requirements
engineering,” IEEE Transactions on Sofiware Engineering, v. 20, n. 10,
Oct., 1994.

[26] Object Management Group, Model Driven Architecture A Technical
Perspective, http://cgi.omg.org/doc?ab/ 2001-02-05, February 21, 2001.

[27] D. Flater, "Impact of Model-Driven Architecture,”
http://www.omg.org/mda/

[28] M. Fowler and K. Scott, UML Distilled. Addison-Wesley, 2000.

[29] Object Management Group, UML 2.0 OCL Request for Proposals,
http://cgi.omg.org/doc?ad/2000-09-03, September 18, 2000.

[30] Object Management Group, Meta Object Facility (MOF) Specification,
Version 1.3: ftp://ftp.omg.org/pub/docs/ formal/00-04-03.pdf, March,
2000.

[31] M. Jarke, S. Eherer, R. Gallersdorfer, M. Jeusfeld, and M. Staudt,
“ConceptBase — a deductive object base manager,”

[32] S. M. McMenamin and J. F. Palmer, Essential Systems Analysis,
Yourdon Press, 1984.

[33] E. Barkmeyer and M. E. Algeo, “Enterprise resource planning systems
in manufacturing,,” in Handbook for industrial engineering, August,
2000.

[34] D. Flater, E. Barkmeyer, and E. Wallace, “Towards unambiguous
specifications: five alternative job control models for an object-oriented,
hierarchical shop control system,” in Proceedings of the 1999 ASME
Design Engineering Technical Conference, September 12-15, 1999.

[35] Object Management Group, PDM Enablers, http://cgi.omg.org/cgi-
bin/doc?dtc/2000-06-02

